聚合国内IT技术精华文章,分享IT技术精华,帮助IT从业人士成长

[译] C程序员该知道的内存知识 (2)

2020-05-19 00:43 浏览: 648 次 我要评论(0 条) 字号:

续上篇:

[译] C程序员该知道的内存知识 (1)

这是本系列的第二篇,预计还会有2篇,感兴趣的同学记得关注,以便接收推送,等不及的推荐阅读原文。 




先放图镇楼: 

点击在新窗口中浏览此图片

来源:Linux地址空间布局 - by Gustavo Duarte

关于图片的解释可参见上篇。

开始吧。 





# 理解堆上的内存分配

工具箱: 

* brk(), sbrk() - 修改数据段的大小
* malloc() 家族 - 可移植的 libc 内存分配器

堆上的内存分配,最简单的实现可以是修改 program break[2](译注:参见上图中部右侧)的上界,申请对原位置和新位置之间内存的访问权限。如果就这么搞的话,堆上内存分配和栈上分配一样快(除了换页的开销,一般我们认为栈是被锁定在内存中;译注:指栈不会被换出到磁盘,可以用mlock限制OS对一段地址空间使用swap)。但这里还是有只猫(cat),我是说,有点毛病(catch),见鬼。(译tu注cao:这个真难翻)

char *block = sbrk(1024 * sizeof(char));

* 我们无法回收不再使用的内存块   
* 它也不是线程安全的,因为堆是在线程间共享的
* 这个接口(译注:sbrk)也很难移植,因此库函数被禁止碰这个break。

[qoute]man 3 sbrk — 各种系统的 sbrk 使用多种不同的参数类型,常见的包括 int, ssize_t, ptrdiff_t, intptr_t[/quote]

由于这些问题,libc要求实现统一的内存分配接口,具体实现有很多[3](译注:例如glibc,jemalloc,tcmalloc等),但都给你提供了线程安全、支持任意尺寸的内存分配器……只是要付出点代价——延迟,因为得引入锁机制,以及用来维护已用/可用内存的数据结构,和额外的内存开销。还有,堆也不是唯一的选项,在大块内存分配的情况下常常也会用内存映射段(Memory Mapping Segment,MMS)。

[qoute]man 3 malloc —— 一般来说,malloc() 从堆上分配内存,  ... 当分配的内存块大于 MMAP_THRESHOLD 时,glibc的 malloc() 实现使用私有匿名映射来分配内存。[/qoute]

(译注:Linux 下 mmap 的 flags 参数是个 bitmap,其中有两个 bit 分别为 MAP_PRIVATE、MAP_ANONYMOUS,对应引用中提到的“私有”、“匿名”) 

由于堆空间在 start_brk 和 brk (译注:即 heap 的下界和上界,建议对照图中右侧的标注)之间总是连续的(译注:这里指的是虚拟地址空间连续,但其中每一页都可能映射到任一物理页),因此你无法在中间打个洞来减少数据段的尺寸。比如这个场景: 

char *truck = malloc(1024 * 1024 * sizeof(char));
char *bike  = malloc(sizeof(char));
free(truck);


堆分配器将会调大 brk,以便给 truck 腾出空间。对于 bike 也一样。但是当 truck 被释放后,brk 不能被调小,因为 bike 正占着高位的地址。结果是,你的进程 **可以** 重用 truck 的内存,但 **不能** 退还给OS,除非 bike 也被释放。当然你也可以用 mmap 来分配 truck 所需的空间,不放在堆内存段里,就可以不影响 program break ,但这仍然无法解决分配小块内存导致的空洞(换句话说就是“引起碎片化”)。

注意 free() 并不总是会缩小数据段,因为这是一个有很大潜在开销的操作(参见后文“对按需调页的解释”)。对于需要长时间运行的程序(例如守护进程)来说这会是个问题。有个叫  malloc_trim() 的 GNU 扩展可以用来从堆顶释放内存,但可能会慢得令人蛋疼,尤其对于大量小对象的情况,所以应该尽量少用。

## 什么时候应该使用自定义分配器

有一些实际场景中通用分配器有短板,例如大量分配固定尺寸的小内存。这看起来不像是典型的场景,但实际上出现得很频繁 。例如,用于查找的数据结构(典型如树、字典树)需要分配大量节点用于构造其层次结构。在这个场景下,不仅碎片化会是个问题,数据的局部性也是。cache效率高的数据结构会将key放在一起(最好在同一个内存页),而不是和数据混在一起。默认的分配器不能保证下次分配时还在同一个block,更糟的是分配小单元的额外空间开销。解决办法在此:

X

来源: Slab by wadem, on Flickr (CC-BY-SA)

(译注:原图无法打开了,另贴一张)

点击在新窗口中浏览此图片

来源:IBM - Linux slab 分配器剖析


## Slab分配器

工具箱:
* posix_memalign() - 分配对齐的内存

Bonwick 为内核对象缓存写的这篇文章[4]介绍了 slab 分配器的原理,也可用于用户空间。Okay,我们对绑定在CPU上的 slab 不感兴趣 —— 就是你找分配器要一块内存,例如说一整页,然后切成很多固定大小的小块。如果每个小块都能保存至少一个指针或一个整数,你就可以把他们串成一个链表 ,表头指向第一个空闲元素。

/* Super-simple slab. */
struct slab {
  void **head;
};

/* Create page-aligned slab */
struct slab *slab = NULL;
posix_memalign(&slab, page_size, page_size);
slab->head = (void **)((char*)slab + sizeof(struct slab));

/* Create a NULL-terminated slab freelist */
char* item = (char*)slab->head;
for(unsigned i = 0; i < item_count; ++i) {
  *((void**)item) = item + item_size;
  item += item_size;
}
*((void**)item) = NULL;


译注:
1. 代码里用的二级指针可能让人有点晕,这是Linus推崇的链表实现,推荐阅读"linus torvalds answers your questions"[5],在favorite hack这一节,是个很有趣的思维训练
2. 第8行 `posix_memalign` 分配了一页内存,并且对齐到页边界,这意味着正好拿到了一个物理页
3. 因为申请到的 slab 大小是一个page,所以 `item_count` = `page_size` / `item_size`;其中 `item_size` 可以根据应用需要指定。

然后内存分配就简单到只要弹出链表的头结点就行了,内存释放则是插入头结点。这里还有个优雅的小技巧:既然 slab 对齐到了页边界,你只要将指针向下取整到 page_size 就能得到这个 slab 的指针。

/* Free an element */
struct slab *slab = (void *)((size_t)ptr & PAGESIZE_BITS);
*((void**)ptr) = (void*)slab->head;
slab->head = (void**)ptr;

/* Allocate an element */
if((item = slab->head)) {
  slab->head = (void**)*item;
} else {
  /* No elements left. */
}


译注:对于 page_size = 4KB 的页面,PAGESIZE_BITS = 0xFFFFF000,ptr & PAGESIZE_BITS 清零了低12位,正好是这一页的开始,也就是这个slab的起始地址。

太棒了,但是还有binning(译注:应该是指按不同的长度分桶),变长存储,cache aliasing(译注:同一个物理地址中的数据出现在多个不同的缓存行中),咖啡因(译注:这应该是作者在逗逼了),...怎么办?可以看看我之前为 Knot DNS 写的代码[6],或者其他实现了这些点的库。例如,(喘口气),glib 里有个很整齐的文档[7],把它称为“memory slices”。 

译注:slab 分配器适合大量小对象的分配,可以避免常见的碎片问题;在内核中的实现还可以支持硬件缓存对齐,从而提高缓存的利用率。

## 内存池

工具箱:
* obstack_alloc() - 从object stack中分配内存
(译注:指 GNU 的 obstack ,用stack来保存object的内存池实现)

正如slab分配器一样,内存池比通用分配器好的地方在于,你每次申请一大块内存,然后像切蛋糕一样一小块一小块切出去,直到不够用了,然后你再申请一大块。还有,当你都处理完了以后,你就可以收工,一次性释放所有空间。

是不是特别傻瓜化?因为确实如此,但只是针对特定场景如此。你不需要考虑同步,也不需要考虑释放。再没有忘记回收的坑了,数据的局部性也更加符合预期,而且对于小对象的开销也几乎为0。

这个模式特别适合很多类型的任务,包括短生命周期的重复分配(例如网络请求处理),和长生命周期的不可变数据(例如frozen set;译注:创建后不再改变的集合)。你不再需要逐个释放对象(译注:可以最后批量释放)。如果你能合理推测出平均需要多少内存,你还可以将多余的内存释放,以便用于其他目的。这可以将内存分配问题简化成简单的指针运算。 

而且你很走运 —— GNU libc 提供了,嗬,一整套API来干这事儿。这就是 obstacks ,用栈来管理对象。它的 HTML 文档[8] 写得不咋地,不过抛开这些小缺陷,它允许你完成基于内存池的分配和回收(包括部分回收和全量回收)。

/* Define block allocator. */
#define obstack_chunk_alloc malloc
#define obstack_chunk_free free

/* Initialize obstack and allocate a bunch of animals. */
struct obstack animal_stack;
obstack_init (&animal_stack);
char *bob = obstack_alloc(&animal_stack, sizeof(animal));
char *fred = obstack_alloc(&animal_stack, sizeof(animal));
char *roger = obstack_alloc(&animal_stack, sizeof(animal));

/* Free everything after fred (i.e. fred and roger). */
obstack_free(&animal_stack, fred);

/* Free everything. */
obstack_free(&animal_stack, NULL);


译注:obstack这些api实际都是宏;需要通过宏来指定找OS分配和回收整块内存用的方法,如上第2、3行所示。由于对象使用栈的方式管理(先分配的最后释放),所以释放 fred 的时候,会把 fred 和在 fred 之后分配的对象(roger)一起释放掉。 

还有个小技巧:你可以扩展栈顶的那个对象。例如带缓冲的输入,变长数组,或者用来替代 realloc()-strcpy() 模式(译注:重新分配内存,然后把原数据拷贝过去): 

/* This is wrong, I better cancel it. */
obstack_grow(&animal_stack, "long", 4);
obstack_grow(&animal_stack, "fred", 5);
obstack_free (&animal_stack, obstack_finish(&animal_stack));

/* This time for real. */
obstack_grow(&animal_stack, "long", 4);
obstack_grow(&animal_stack, "bob", 4);
char *result = obstack_finish(&animal_stack);
printf("%s\n", result); /* "longbob" */


译注:前三行是作者逗逼了,看后四行就行;用 obstack_grow 扩展栈顶元素占用的内存,扩展结束后调用 obstack_finish 结束扩展,并返回栈顶元素的地址。

## 对按需调页(demand paging)的解释

工具箱:
* mlock() - 锁定/解锁内存(避免被换出到swap)
* madvise() - 给(内核)建议指定内存范围的处置方式

通用内存分配器不立即将内存返回给系统的原因之一是,这个操作开销很大。系统需要做两件事:(1) 建立 **虚拟** 页到 **真实(real)** 页的映射,和 (2) 给你一个清零的**真实**页。这个真实页被称为**帧(frame)**,现在你知道它们的差别了。每一帧都必须被清空,毕竟你不希望 OS 泄漏其他进程的秘密,对吧。这里还有个小技巧,还记得 **overcommit** 吗?虚拟内存分配器只把这个交易刚开始的那部分当回事,然后就开始变魔术了 —— 页表里的大部分页面并不指向一个真实页,而是指向一个特殊的全 0 页面。 

每次你想要访问这个页面时,就会触发一个 page fault,这意味着内核会暂停 进程的执行,分配一个真实页、更新页表,然后恢复进程,并假装什么也没发生。这是汇总在一句话里、我能做出的最好解释了,这里[9]还有更个详细的版本。这也被称作**“按需调页”(demand paging)** 或 **“延迟加载”(lazy loading)**。

引用
斯波克船长说“人无法召唤未来”,但这里你可以操控它。


(译注:星际迷航,斯波克说“One man cannot summon the future.”,柯克说“But one man can change the present.”)

内存管理器不是先知,他只是保守地预测你访问内存的方式,而你自己也未必更清楚(你将会怎样访问内存)。(如果你知道)你可以将一段连续的内存块锁定在**物理**内存中,以避免后续的page fault: 

char *block = malloc(1024 * sizeof(char));
mlock(block, 1024 * sizeof(char));


(译注:访问被换出到swap的页面会触发page fault,然后内存管理器会从磁盘中载入页面,这会导致较严重的性能问题;用 mlock 将这段区域锁定后,OS就不会被操作系统换出到swap;例如,在允许的情况下,MySQL会用mlock将索引保持在物理内存中)

注意:你还可以根据自己的内存使用模式,给内核提出建议 

char *block = malloc(1024 * sizeof(block));
madvise(block, 1024 * sizeof(block), MADV_SEQUENTIAL);


对建议的解释是平台相关的,系统甚至可能选择忽略它,但大部分平台都处理得很好。但不是所有建议都有良好的支持,有些平台可能会改变建议的语义(如MADV_FREE移除私有脏页;译注:“脏页”,dirty page,是指分配以后有过写入,其中可能有未保存的数据),但是最常用的还是MADV_SEQUENTIAL, MADV_WILLNEED, 和 MADV_DONTNEED 这神圣三人组(译注:holy trinity,圣经里的三位一体,作者用词太跳脱……)。

译注:还记得《踩坑记:go服务内存暴涨》里对 MADV_DONTNEED 和 MADV_FREE 的解释吗?这里再回顾下
* MADV_DONTNEED:不再需要的页面,Linux会立即回收
* MADV_FREE:不再需要的页面,Linux会在需要时回收
* MADV_SEQUENTIAL:将会按顺序访问的页面,内核可以通过预读随后的页面来优化,已经访问过的页面也可以提前回收
* MADV_WILLNEED:很快将访问,建议内核提前加载




又到休息点,这篇暂时到这里。 

下一篇会继续翻译下一节《Fun with memory mapping》,还有很多有意思的内容,敬请关注~

顺便再贴下之前推送的几篇文章,祝过个充实的五一假期~

* 《踩坑记:go服务内存暴涨》 
* 《TCP:学得越多越不懂》 
* 《UTF-8:一些好像没什么用的冷知识
* 《关于RSA的一些趣事
* 《程序员面试指北:面试官视角




参考链接:
[1] What a C programmer should know about memory
https://marek.vavrusa.com/memory/

[2] sbrk(2) - Linux man page
https://linux.die.net/man/2/sbrk

[3] C Programming/stdlib.h/malloc
https://en.wikibooks.org/wiki/C_Programming/C_Reference/stdlib.h/malloc#Implementations

[4] The Slab Allocator: An Object-Caching Kernel Memory Allocator
https://www.usenix.org/legacy/publications/library/proceedings/bos94/full_papers/bonwick.a

[5] linus torvalds answers your questions
https://meta.slashdot.org/story/12/10/11/0030249/linus-torvalds-answers-your-questions

[6] Knot DNS - slab.h
https://github.com/CZNIC-Labs/knot/blob/1.5/src/common-knot/slab/slab.h

[7] glib  - memory slices
https://developer.gnome.org/glib/stable/glib-Memory-Slices.html

[8] GNU libc - Obstacks
https://www.gnu.org/software/libc/manual/html_node/Obstacks.html

[9] How the kernel manages your memory
http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/


网友评论已有0条评论, 我也要评论

发表评论

*

* (保密)

Ctrl+Enter 快捷回复